

D.Sc. Agnieszka Laskowska (family name Kurowska), assistant professor

#### **CONTACT**

Department of Wood Science and Wood Preservation Institute of Wood Sciences and Furniture Warsaw University of Life Sciences - SGGW room no. 2/34, building no. 34 159 Nowoursynowska St., Warsaw 02-787, Poland

Phone: +48 22 59 386 61

e-mail: agnieszka\_laskowska@sggw.edu.pl

## **EDUCATION**

| Occupational titles and science degrees                        | Date (year) | Institution                               |
|----------------------------------------------------------------|-------------|-------------------------------------------|
| Master engineer of wood technology                             | 2008        |                                           |
| <b>Doctor</b> of forest sciences in field of wood technology   | 2013        | Faculty of Wood Technology                |
| <b>Doctor (habilitation)</b> of agricultural sciences in field | 2019        | Warsaw University of Life Sciences - SGGW |
| of forest sciences, specialty wood technology                  |             |                                           |

# **PROFESSIONAL COMPETENCE**

| Position                                | Date (year) | Institution                                                                        |  |
|-----------------------------------------|-------------|------------------------------------------------------------------------------------|--|
| Assistant professor                     | 2014        | Department of Wood Science and Wood Preservation                                   |  |
| Assistant professor (with habilitation) | 2019        | Institute of Wood Sciences and Furniture Warsaw University of Life Sciences - SGGW |  |

## **SELECTED CURRENT FUNCTIONS**

- member of the University's Disciplinary Committee for Academic Teachers
- expert, Association of Foresters and Wood Technologists <a href="http://www.sitlid.pl/">http://www.sitlid.pl/</a>
- member of the Reviewer Board Forests <a href="https://www.mdpi.com/journal/forests">https://www.mdpi.com/journal/forests</a>
- reviewer: Annals Warsaw University of Life Sciences Forestry and Wood Technology http://wtd.sggw.pl/Content/annals-wuls.html

BioResources - https://bioresources.cnr.ncsu.edu/

Coatings - <a href="https://www.mdpi.com/journal/coatings">https://www.mdpi.com/journal/coatings</a>

Maderas: Ciencia y Tecnologia - <a href="https://www.scielo.cl/scielo.php?pid=0718-221x&script=sci\_serial">https://www.scielo.cl/scielo.php?pid=0718-221x&script=sci\_serial</a>

Materials - <a href="https://www.mdpi.com/journal/materials">https://www.mdpi.com/journal/materials</a>

evaluator of The National Centre for Research and Development - <a href="http://www.ncbir.pl/">http://www.ncbir.pl/</a>

## **DIDACTIC**

- the lectures: Wood science, Science of exotic wood, Microclimate for wooden cultural objects, Hydrothermal wood processing, Wood drying, Mechanics of materials
- co-author of course book: Selected problems of hydrothermal wood processing in tasks
- training course in the field of structure and properties of domestic and exotic wood

#### **SCIENCE**

#### Science research:

- research on the impact of physical and technological factors on the properties of wood and wood products
- structure and properties of densified wood
- study of the relationship between the anatomical structure and the physical, mechanical properties of wood
- hydrothermal wood processing

#### Research projects:

- ENCOURAGING training Skills in the Furniture and woodworking Industries through an innovative Simulation-basEd approach project in programme Erasmus+ (2019-2021)
- CROPTECH "Intelligent systems for breeding and cultivation of wheat, maize and poplar for optimized biomass production, biofuels and modified wood" - research project in programme Biostrateg2 financed by National Centre of Research and Development (2016-2019)
- EFFRaWood "Enhancement of utilization affectivity of raw material in production processes in industry"research project in programme Biostrateg2 financed by National Centre of Research and Development
  (2016-2018)
- Research implementation project within Regional Operational Programme for the Małopolska Region for 2014 - 2020, "Knowledge economy", "Industrial research projects carried out for Enerbio Polska Sp. z o.o. in connection with the development of technologies for obtaining innovative wood material" (2017)
- WULS in Warsaw Project for realization of research task within internal competition for young scientific employees, "Influence of thermo-mechanical modification on hygroscopic properties of wood from temperate and tropical zones" (2016-2017)
- WULS in Warsaw Project for realization of research task within internal competition for young scientific employees, "Possibilities of using birch wood (*Betula pendula* Roth) in modern technologies in wood industry" (2014-2015)
- Research implementation project within LIDER program, co-financed by the NCBR: "Innovative lignocellulose biomass renewable in a short cycle based composite materials increasing wood industry competitiveness" (2014 - 2016)
- Research implementation project within "A grant-type competition for business partnerships with scientific
  institutions" implemented by MSODI (Masovian Network of Advisory and Information Centers in the field of
  Innovation), co-financed by the European Union within European Social Fund, Priority VIII, The Office of the
  Marshal of the Mazowieckie Voivodeship in Warsaw, International Development Norway AS: "Development
  of a new wood product on the basis of a patent of the Warsaw University of Life Sciences concerning the
  modification of wood by heating and then densifying it" (2014)

## **RESEARCH OFFER AND EXPERT ASSESSMENTS**

- expertise concerning of quality of woodworks and wood-based panels,
- wood identification,
- assessment and comparison analysis of properties of new wood species and new wooden materials introduction on the market,
- analyzes of projects of innovations and studies of implementations.

# **SELECTED SCIENCE PUBLICATIONS FROM LAST 6 YEARS:**

#### ORCID: 0000-0001-6212-3100

## 2022

Bytner O., Drożdżek M., Laskowska A., Zawadzki J. 2022: Influence of Thermal Modification in Nitrogen Atmosphere on the Selected Mechanical Properties of Black Poplar Wood (*Populus nigra* L.). Materials 15 (22): 7949 <a href="https://www.mdpi.com/1996-1944/15/22/7949">https://www.mdpi.com/1996-1944/15/22/7949</a>

**Bytner O., Drożdżek M., Laskowska A., Zawadzki J. 2022:** Temperature, Time, and Interactions between Them in Relation to Colour Parameters of Black Poplar (*Populus nigra* L.) Thermally Modified in Nitrogen Atmosphere. Materials 15 (3): 824 <a href="https://www.mdpi.com/1996-1944/15/3/824">https://www.mdpi.com/1996-1944/15/3/824</a>

**Kozakiewicz P., Laskowska A., Drożdżek M., Zawadzki J. 2022:** Influence of Thermal Modification in Nitrogen Atmosphere on Selected Physical and Technological Properties of Wood of European Species with Different Structural Features. Coatings 12 (11): 1663

https://doi.org/10.3390/coatings12111663

Bytner O., Laskowska A., Drożdżek M., Zawadzki J. 2022: Influence of thermal modification in nitrogen atmosphere on the gloss of black poplar (*Populus nigra* L.). Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 117: 89 - 96

#### 2021

Laskowska A., Majewska K., Kozakiewicz P., Mamiński M., Bryk G. 2021: Case Study of Anatomy, Physical and Mechanical Properties of the Sapwood and Heartwood of Random Tree *Platycladus orientalis* (L.) Franco from South-Eastern Poland. Forests 12 (7): 925

https://www.mdpi.com/1999-4907/12/7/925

Laskowska A., Marchwicka M., Trzaska A., Boruszewski P. 2021: Surface and Physical Features of Thermo-Mechanically Modified Iroko and Tauari Wood for Flooring Application. Coatings 11 (12): 1528

https://www.mdpi.com/2079-6412/11/12/1528

**Boruszewski P., Laskowska A., Jankowska A., Klisz M., Mionskowski M. 2021:** Potential Areas in Poland for Forestry Plantation. Forests 12 (10): 1360

https://www.mdpi.com/1999-4907/12/10/1360

Bytner O., Laskowska A., Drożdżek M., Kozakiewicz P., Zawadzki J. 2021: Evaluation of the Dimensional Stability of Black Poplar Wood Modified Thermally in Nitrogen Atmosphere. Materials 14 (6): 1491

https://www.mdpi.com/1996-1944/14/6/1491

Mańkowski P., Laskowska A. 2021: Compressive strength parallel to grain of earlywood and latewood of yellow pine. Maderas-Ciencia y Tecnologia 23: 57, 1 - 12

https://scielo.conicyt.cl/scielo.php?pid=S0718-221X2021000100457&script=sci arttext

#### 2020

Laskowska A. 2020: Impact of Cyclic Densification on Bending Strength and Modulus of Elasticity of Wood from Temperate and Tropical Zones. Bioresources 15 (2): 2869 - 2881

https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes 15 2 2869 Laskowska Cyclic Densification Bending Strength Laskowska A. 2020: The influence of ultraviolet radiation on the colour of thermo-mechanically modified beech and oak wood. Maderas. Ciencia y tecnología 22 (1): 55 - 68

https://scielo.conicyt.cl/scielo.php?script=sci\_arttext&pid=S0718-221X2020005000106

**Laskowska A. 2020:** Density profile and hardness of thermo-mechanically modified beech, oak and pine wood. Drewno 63 (205): 25-41

http://drewno-wood.pl/

Laskowska A., Mamiński M. 2020: The properties of particles produced from waste plywood by shredding in a single-shaft shredder. Maderas. Ciencia y tecnología, 22 (2): 197 - 204

http://revistas.ubiobio.cl/index.php/MCT/article/view/3951

Kozakiewicz P., Drożdżek M., Laskowska A., Grześkiewicz M., Bytner O., Radomski A., Mróz A., Betlej I., Zawadzki J. 2020: Chemical Composition as a Factor Affecting the Mechanical Properties of Thermally Modified Black Poplar (*Populus nigra* L.). Bioresources 15 (2): 3915-3929

https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes 15 2 3915 Kozakiewicz Chemical Composition Black Poplar

Mańkowski P., Laskowska A. 2020: Determination of the compressive strength parallel to the grain of resinous yellow pine heartwood. Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 109: 81 - 85

**Kozakiewicz P., Laskowska A., Ciołek S. 2020**: A study of selected features of Shan Tong variety of plantation paulownia and its wood properties. Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology 111: 116 - 123

## 2019

Kozakiewicz P., Drożdżek M., Laskowska A., Grześkiewicz M., Bytner O., Radomski A., Zawadzki J. 2019: Effects of Thermal Modification on the Selected Physical Properties of Sapwood and Heartwood of Black Poplar (*Populus nigra* L.). Bioresources 14 (4): 8391 - 8404

https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/Biores 14 4 8391 Kozakiewicz Thermal Modification Black Poplar Kozakiewicz P., Brzozowski R., Laskowska A., Zbieć M. 2019: Acoustic insulation properties of selected African wood species: padouk, bubinga, sapele, Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology 107: 4 - 12

# 2018

**Laskowska A., Sobczak J. W. 2018:** Surface chemical composition and roughness as factors affecting the wettability of thermomechanically modified oak (*Quercus robur* L.). Holzforschung 72 (11): 993 - 1000

https://www.degruyter.com/view/j/hfsg.2018.72.issue-11/hf-2018-0022/hf-2018-0022.xml

**Laskowska A., Mamiński M. 2018:** Properties of particleboard produced from post-industrial UF- and PF-bonded plywood. European Journal of Wood and Wood Products 76 (2): 427 - 435

https://link.springer.com/article/10.1007/s00107-017-1266-8

- Laskowska A., Marchwicka M., Boruszewski P., Wyszyńska J. 2018: Chemical composition and selected physical properties of oak wood (*Quercus robur* L.) modified by cyclic thermo-mechanical treatment. BioResources 13 (4): 9005 9019
- https://bioresources.cnr.ncsu.edu/resources/chemical-composition-and-selected-physical-properties-of-oak-wood-quercus-robur-l-modified-by-cyclic-thermo-mechanical-treatment/
- Laskowska A., Kozakiewicz P., Zbieć M., Zatoń P., Oleńska S., Beer P. 2018: Surface characteristics of *Pinus sylvestris* L. veneers produced with a peeling process in industrial conditions. BioResources 13 (4): 8342 8357
- https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes 13 4 8342 Laskowska Surface Characteristics Scots Pine Venner
- Laskowska A. 2018: Susceptibility of thermo-mechanically modified Scots pine (*Pinus sylvestris* L.) sapwood and heartwood to colour change under the influence of ultraviolet radiation. Drvna Industrija 69 (3): 253 264

https://hrcak.srce.hr/206358?lang=en

- Laskowska A., Mamiński M. 2018: Density profile of particleboard produced from post-industrial waste wood charged with synthetic resin load. Annals of Warsaw University of Life Sciences SGGW. Forestry and Wood Technology 102: 55 60
- Mańkowski P., Laskowska A., Zbieć M. 2018: Determination of bending strength and modulus of elasticity in the tangential and radial directions of yellow pine (*Pinus ponderosa* Douglas ex C. Lawson). Annals of Warsaw University of Life Sciences SGGW. Forestry and Wood Technology 102: 69 74
- Laskowska A., Kozakiewicz P., Zbieć M. 2018: Determination of the colour parameters of iroko wood subjected to artificial UV light irradiation. Annals of Warsaw University of Life Sciences SGGW, Forestry and Wood Technology 102: 133 138
- **Laskowska A. 2018:** Assessment of compressive strength and compressive modulus parallel to the grain of oak and tauari wood after thermo-mechanical modification. Annals of Warsaw University of Life Sciences SGGW. Forestry and Wood Technology 103: 70 76
- Laskowska A., Wyszyńska J., Zbieć M. 2018: Water absorption process in the thermo-mechanically modified iroko and tauari wood. Annals of Warsaw University of Life Sciences SGGW. Forestry and Wood Technology 104: 496 503

#### 2017

- **Laskowska A. 2017:** The influence of process parameters on the density profile and hardness of surface-densified birch wood (*Betula pendula* Roth). BioResources 12 (3): 6011 6023
- https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes 12 3 6011 Laskowska Process Parameters Density Profile H ardness Birch Wood
- Laskowska A., Kozakiewicz P. 2017: Surface wettability of wood species from tropical and temperate zones by polar and dispersive liquids. Drvna Industrija 68 (4): 299 306

https://hrcak.srce.hr/191940?lang=en

- **Boruszewski P., Jankowska A., Kurowska A. 2017:** Comparison of the structure of juvenile and mature wood of *Larix decidua* Mill. from fast-growing plantations in Poland. BioResources 12 (1): 1813 1825
- https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes 12 1 1813 Boruszewski Comparison Structure Juvenile Mature Wood
- **Laskowska A., Kozakiewicz P. 2017**: Surface adsorption of selected wood species represented different type of structure. Annals of Warsaw University of Life Sciences SGGW, Forestry and Wood Technology 100: 72 76
- **Dobrowolska E., Jankowska A., Laskowska A. 2017:** Wytrzymałość i wybrane właściwości fizyczne drewna poddanego różnym metodom sztucznego starzenia. Ochrona budynków przed wilgocią, korozją biologiczną i ogniem, praca zbiorowa, T. 14, pod red. Skowroński W., Polskie Stowarzyszenie Mykologów Budownictwa, Wrocław, 31 55

#### More information on the websites:

https://www.researchgate.net/profile/Agnieszka Laskowska

https://scholar.google.com/citations?user=MgL\_aWoAAAAJ&hl=pl

https://nauka-polska.pl/#/profile/scientist?id=247692& k=f1jyag

Actualisation: February 2023